Have any question ?
+91 8106-920-029
+91 6301-939-583
team@appliedaicourse.com
Register
Login
COURSES
Applied Machine Learning Course
Diploma in AI and ML
GATE CS Blended Course
Interview Preparation Course
AI Workshop
AI Case Studies
Courses
Applied Machine Learning Course
Workshop
Case Studies
Job Guarantee
Job Guarantee Terms & Conditions
Incubation Center
Student Blogs
Live Sessions
Success Stories
For Business
Upskill
Hire From Us
Contact Us
Home
Courses
Yellow taxi Demand prediction Newyork city
Co-variance
Co-variance
Instructor:
Applied AI Course
Duration:
14 mins
Full Screen
Close
This content is restricted. Please
Login
Prev
Next
Box cox transform
Pearson Correlation Coefficient
Plotting for exploratory data analysis (EDA)
1.1
Introduction to IRIS dataset
26 min
1.2
3D scatter plot
6 min
1.3
Pair plots
14 min
1.4
Limitations of Pair Plots
2 min
1.5
Histogram and Introduction to PDF(Probability Density Function)
17 min
1.6
Univariate Analysis using PDF
6 min
1.7
CDF(Cumulative Distribution Function)
15 min
1.8
Mean, Variance and Standard Deviation
17 min
1.9
Median
10 min
1.10
Percentiles and Quantiles
9 min
1.11
IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)
30 min
1.12
Box-plot with Whiskers
9 min
1.13
Violin Plots
4 min
1.14
Summarizing Plots, Univariate, Bivariate and Multivariate analysis
6 min
1.15
Multivariate Probability Density, Contour Plot
9 min
1.16
Exercise: Perform EDA on Haberman dataset
4 min
Linear Algebra
2.1
Why learn it ?
4 min
2.2
Introduction to Vectors(2-D, 3-D, n-D)
14 min
2.3
Dot Product and Angle between 2 Vectors,Row Vector,Column Vector
14 min
2.4
Projection and Unit Vector
5 min
2.5
Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D) - Copy
23 min
2.6
Distance of a point from a Plane/Hyperplane, Half-Spaces
23 min
2.7
Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)
7 min
2.8
Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)
6 min
2.9
Square, Rectangle
6 min
2.10
Hyper-cube and Hyper-cuboid
3 min
Probability and Statistics
3.1
Introduction to Probability and Statistics
17 min
3.2
Population and Sample
7 min
3.3
Gaussian/Normal Distribution and its PDF(Probability Density Function)
27 min
3.4
CDF(Cumulative Distribution function) of Gaussian/Normal distribution
11 min
3.5
Symmetric distribution, Skewness and Kurtosis
5 min
3.6
Standard normal variate (z) and standardization
15 min
3.7
Kernel density estimation
7 min
3.8
Sampling distribution & Central Limit theorem
19 min
3.9
Q-Q plot:How to test if a random variable is normally distributed or not?
23 min
3.10
Discrete and Continuous Uniform distributions
13 min
3.11
How to randomly sample data points (Uniform Distribution)
10 min
3.12
Bernoulli and Binomial Distribution
11 min
3.13
Log Normal Distribution
12 min
3.14
Power law distribution
12 min
3.15
Box cox transform
12 min
3.16
Co-variance
14 min
3.17
Pearson Correlation Coefficient
13 min
3.18
Spearman Rank Correlation Coefficient
7 min
3.19
Correlation vs Causation
3 min
3.20
Confidence interval (C.I) Introduction
8 min
3.21
Computing confidence-interval given distribution
11 min
3.22
C.I for mean of a normal random variable
14 min
3.23
Confidence interval using bootstrapping
17 min
3.24
Hypothesis testing methodology, Null-hypothesis, p-value
16 min
3.25
Resampling and permutation test
15 min
3.26
K-S Test
6 min
3.27
K-S Test for similarity of two distributions
15 min
Dimensionality reduction and Visualization:
4.1
What is dimensionality reduction?
5 min
4.2
Row Vector and Column Vector
4 min
4.3
Represent a dataset: D= {x_i, y_i}
4 min
4.4
Represent a dataset as a Matrix
7 min
4.5
Data preprocessing: Column Normalization
30 min
4.6
Mean of a data matrix
6 min
4.7
Data preprocessing: Column Standardization
16 min
4.8
Co-variance of a Data Matrix
30 min
4.9
MNIST dataset (784 dimensional)
20 min
4.10
Code to load MNIST dataset.
12 min
Principal Component Analysis
5.1
Why learn PCA?
4 min
5.2
Geometric intuition of PCA
14 min
5.3
Mathematical objective function of PCA
13 min
5.4
Alternative formulation of PCA: distance minimization
10 min
5.5
Eigenvalues and eigenvectors
23 min
5.6
PCA for dimensionality reduction and visualization
10 min
5.7
Visualize MNIST dataset
5 min
5.8
Limitations of PCA
5 min
5.9
PCA Code example using Visualization
19 min
5.10
PCA for dimensionality reduction (not-visualization)
15 min
T-distributed stochastic neighborhood embedding (t-SNE)
6.1
What is t-SNE?
7 min
6.2
Neighborhood of a point, Embedding
7 min
6.3
Geometric intuition of t-SNE
9 min
6.4
Crowding problem
8 min
6.5
How to apply t-SNE and interpret its output (distill.pub)
38 min
6.6
t-SNE on MNIST
7 min
6.7
Code example of t-SNE
9 min
Close