Have any question ?
+91 8106-920-029
+91 6301-939-583
team@appliedaicourse.com
Register
Login
COURSES
Applied Machine Learning Course
Diploma in AI and ML
GATE CS Blended Course
Interview Preparation Course
AI Workshop
AI Case Studies
Courses
Applied Machine Learning Course
Workshop
Case Studies
Job Guarantee
Job Guarantee Terms & Conditions
Incubation Center
Student Blogs
Live Sessions
Success Stories
For Business
Upskill
Hire From Us
Contact Us
Home
Courses
Applied Machine Learning Online Course
Business objectives and constraints
Business objectives and constraints
Instructor:
Applied AI Course
Duration:
5 mins
Full Screen
Close
This content is restricted. Please
Login
Prev
Next
Business/Real world problem
Mapping to an ML problem: Data overview
Case Study 1: Quora question Pair Similarity Problem
1.1
How to optimally learn from case-studies in the course?
1 min
1.2
Business/Real world problem : Problem definition
6 min
1.3
Business objectives and constraints.
5 min
1.4
Mapping to an ML problem : Data overview
5 min
1.5
Mapping to an ML problem : ML problem and performance metric.
4 min
1.6
Mapping to an ML problem : Train-test split
5 min
1.7
EDA: Basic Statistics.
7 min
1.8
EDA: Basic Feature Extraction
10 min
1.9
EDA: Text Preprocessing
6 min
1.10
EDA: Advanced Feature Extraction
31 min
1.11
EDA: Feature analysis.
9 min
1.12
EDA: Data Visualization: T-SNE.
3 min
1.13
EDA: TF-IDF weighted Word2Vec featurization.
6 min
1.14
ML Models :Loading Data
6 min
1.15
ML Models: Random Model
7 min
1.16
ML Models : Logistic Regression and Linear SVM
11 min
1.17
ML Models : XGBoost
6 min
Case Study 2: Personalized Cancer Diagnosis
2.1
Business/Real world problem : Overview
13 min
2.2
Business objectives and constraints.
11 min
2.3
ML problem formulation :Data
5 min
2.4
ML problem formulation: Mapping real world to ML problem.
19 min
2.5
ML problem formulation :Train, CV and Test data construction
4 min
2.6
Exploratory Data Analysis:Reading data & preprocessing
7 min
2.7
Exploratory Data Analysis:Distribution of Class-labels
7 min
2.8
Exploratory Data Analysis: “Random” Model
20 min
2.9
Univariate Analysis:Gene feature
34 min
2.10
Univariate Analysis:Variation Feature
19 min
2.11
Univariate Analysis:Text feature
15 min
2.12
Machine Learning Models:Data preparation
8 min
2.13
Baseline Model: Naive Bayes
23 min
2.14
K-Nearest Neighbors Classification
9 min
2.15
Logistic Regression with class balancing
10 min
2.16
Logistic Regression without class balancing
4 min
2.17
Linear-SVM.
6 min
2.18
Random-Forest with one-hot encoded features
7 min
2.19
Random-Forest with response-coded features
6 min
2.20
Stacking Classifier
8 min
2.21
Majority Voting classifier
5 min
Case Study 3:Facebook Friend Recommendation using Graph Mining
3.1
Problem definition.
6 min
3.2
Overview of Graphs: node/vertex, edge/link, directed-edge, path.
11 min
3.3
Data format & Limitations.
9 min
3.4
Mapping to a supervised classification problem.
9 min
3.5
Business constraints & Metrics.
7 min
3.6
EDA:Basic Stats
12 min
3.7
EDA:Follower and following stats.
12 min
3.8
EDA:Binary Classification Task
16 min
3.9
EDA:Train and test split.
11 min
3.10
Feature engineering on Graphs:Jaccard & Cosine Similarities
15 min
3.11
PageRank
14 min
3.12
Shortest Path
4 min
3.13
Connected-components
12 min
3.14
Adar Index
12 min
3.15
Kartz Centrality
6 min
3.16
HITS Score
10 min
3.17
SVD
11 min
3.18
Weight features
6 min
3.19
Modeling
11 min
Case study 4:Taxi demand prediction in New York City
4.1
Business/Real world problem Overview
9 min
4.2
Objectives and Constraints
11 min
4.3
Mapping to ML problem :Data
8 min
4.4
Mapping to ML problem :dask dataframes
12 min
4.5
Mapping to ML problem :Fields/Features.
6 min
4.6
Mapping to ML problem :Time series forecasting/Regression
8 min
4.7
Mapping to ML problem :Performance metrics
6 min
4.8
Data Cleaning :Latitude and Longitude data
4 min
4.9
Data Cleaning :Trip Duration.
7 min
4.10
Data Cleaning :Speed.
5 min
4.11
Data Cleaning :Distance.
2 min
4.12
Data Cleaning :Fare
6 min
4.13
Data Cleaning :Remove all outliers/erroneous points
3 min
4.14
Data Preparation:Clustering/Segmentation
19 min
4.15
Data Preparation:Time binning
5 min
4.16
Data Preparation:Smoothing time-series data.
5 min
4.17
Data Preparation:Smoothing time-series data cont..
2 min
4.18
Data Preparation: Time series and Fourier transforms.
13 min
4.19
Ratios and previous-time-bin values
9 min
4.20
Simple moving average
8 min
4.21
Weighted Moving average.
5 min
4.22
Exponential weighted moving average
6 min
4.23
Results.
4 min
4.24
Regression models :Train-Test split & Features
8 min
4.25
Linear regression.
3 min
4.26
Random Forest regression
4 min
4.27
Xgboost Regression
2 min
4.28
Model comparison
6 min
Case study 5: Stackoverflow tag predictor
5.1
Business/Real world problem
10 min
5.2
Business objectives and constraints
5 min
5.3
Mapping to an ML problem: Data overview
4 min
5.4
Mapping to an ML problem:ML problem formulation.
5 min
5.5
Mapping to an ML problem:Performance metrics.
21 min
5.6
Hamming loss
7 min
5.7
EDA:Data Loading
13 min
5.8
EDA:Analysis of tags
11 min
5.9
EDA:Data Preprocessing
11 min
5.10
Data Modeling : Multi label Classification
18 min
5.11
Data preparation.
8 min
5.12
Train-Test Split
2 min
5.13
Featurization
6 min
5.14
Logistic regression: One VS Rest
7 min
5.15
Sampling data and tags+Weighted models.
4 min
5.16
Logistic regression revisited
4 min
5.17
Why not use advanced techniques
3 min
Case Study 6: Microsoft Malware Detection
6.1
Business/real world problem :Problem definition
6 min
6.2
Business/real world problem :Objectives and constraints
7 min
6.3
Machine Learning problem mapping :Data overview.
13 min
6.4
Machine Learning problem mapping :ML problem
12 min
6.5
Machine Learning problem mapping :Train and test splitting
4 min
6.6
Exploratory Data Analysis :Class distribution.
3 min
6.7
Exploratory Data Analysis :Feature extraction from byte files
8 min
6.8
Exploratory Data Analysis :Multivariate analysis of features from byte files
3 min
6.9
Exploratory Data Analysis :Train-Test class distribution
2 min
6.10
ML models - using byte files only :Random Model
11 min
6.11
k-NN
7 min
6.12
Logistic regression
5 min
6.13
Random Forest and Xgboost
7 min
6.14
ASM Files :Feature extraction & Multiprocessing.
11 min
6.15
File-size feature
2 min
6.16
Univariate analysis
3 min
6.17
t-SNE analysis.
2 min
6.18
ML models on ASM file features
8 min
6.19
Models on all features :t-SNE
2 min
6.20
Models on all features :RandomForest and Xgboost
4 min
Module 6: Live Sessions
7.1
Case Study 7: LIVE session on Ad Click Prediction
7.2
Case Study 7: Live Session: Ad-Click Prediction (contd.) and Performance metrics
7.3
Productionization of real-world ML systems
7.4
Scenario based Interview Questions for ML engineer roles
7.5
ML System Design For a Product Search Engine
Close